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Universitätsklinik Freiburg, Hugstetter Strasse 55,

D-79106 Freiburg, Germany

Correspondence e-mail: maba@uni-freiburg.de

# 2007 International Union of Crystallography

Printed in Denmark – all rights reserved

An advanced statistical model is suggested that is designed to

estimate the twinning fraction in merohedrally (or pseudo-

merohedrally) twinned crystals. The model takes experimental

errors of the measured intensities into account and is adapted

to the accuracy of a particular X-ray experiment through the

standard deviations of the reflection intensities. The theor-

etical probability distributions for the improved model are

calculated using a Monte Carlo-type simulation procedure.

The use of different statistical criteria (including likelihood) to

estimate the optimal twinning-fraction value is discussed. The

improved model enables better agreement of theoretical and

observed cumulative distribution functions to be obtained and

produces twinning-fraction estimates that are closer to the

refined values in comparison to the conventional model, which

disregards experimental errors. The results of the two

approaches converge when applied to selected subsets of

measured intensities of high accuracy.
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1. Introduction

In recent decades, twinning has been shown to be an impor-

tant feature of macromolecular crystals (Yeates, 1997; Yeates

& Fam, 1999; Dauter, 2003; Parsons, 2003; Lebedev et al.,

2006). Twinned crystals are composed of separate differently

orientated crystal domains. If certain conditions for unit-cell

parameters and orientation of the domains are met (mero-

hedral twinning), the reciprocal-space lattices of different

domains coincide and the measured intensity of a diffracted

beam becomes the sum of two (or more) different ‘true’

intensities that come from different domains. In this case, the

structure-factor magnitude can no longer be estimated as the

square root of the corresponding measured intensity and

special efforts must be applied to restore it. The possibility of

merohedral twinning occurs when the symmetry of the crystal

lattice is higher than the symmetry of the unit-cell content. It is

sometimes the case that the lattice has additional approximate

symmetry not conditioned by crystal syngony (for example,

the angle � ’ 90� in space group P2). Such cases are usually

referred to as pseudo-merohedral twinning. We do not

distinguish between merohedral and pseudo-merohedral

twinning in this paper, assuming sufficiently small obliquity

(such that the complete overlap of spots from different lattices

occurs within the whole resolution range of the data set). For

brevity, we restrict our consideration in this paper to one

twofold twin operator (hemihedrally twinned specimens).

More complicated cases may be considered in a similar way.

In the case of hemihedral twinning, every measured inten-

sity is a linear combination of two ‘true’ intensities with

coefficients depending on the relative volume of the smaller



twin mate. This relative volume is usually referred to as the

twinning fraction or twinning ratio. If the twinning fraction � is

known (and is not equal to 0.5), the true intensities can be

restored. The key problem here is to define the value �. To

estimate the twinning fraction, several

methods have been suggested (Fisher &

Sweet, 1980; Murray-Rust, 1973;

Britton, 1972; Rees, 1980; Yeates, 1988;

Redinbo & Yeates, 1993; Gomis-Rüth et

al., 1995; Lebedev et al., 2006). In this

paper, we base our estimation on the

method suggested by Yeates (1988).

This method is based on the study of the

normalized difference H of two twinned

intensities J obs(h) and J obs(Gh) (where

G represents the twinning operator in

reciprocal space and h varies). The set

of H values calculated for different

twinned pairs of observed intensities is

studied with the use of a collection of

theoretical distributions of H corresponding to different

twinning-fraction values. The customary theoretical distribu-

tions are derived from a simple statistical model that considers

the experimental errors to be negligible. An experimental set
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Figure 1
Cumulative distributions of H for four twinned crystals: (a) 1c5e, (b) WGA-div, (c) WGA-18 and (d) LDL l463. The observed distributions are
represented by red dotted lines. Thin black lines represent theoretical cumulative distributions derived for different twinning fractions using the
commonly used model that does not account for experimental errors. The values of the twinning fractions are shown over the corresponding lines.

Table 1
Crystals used to test the method.

The twinning is merohedral for WGA-div and 1l2h and pseudo-merohedral for other crystals.

Crystal Reference
dmin

(Å)
Space
group

Unit-cell parameters
(Å, �)

Twinning
law

1c5e Capsid-stabilizing protein of
bacteriophage � (Yang et al., 2000)

1.1 P21 a = 45.66, b = 69.03, c = 45.67,
� = � = 90.0, � = 104.34

l �k h

WGA-div Wheat-germ agglutinin
(Diederichs et al., in preparation)

1.7 R3 a = b = 101.3, c = 144.9,
� = � = 90.0, � = 120.0

k h �l

WGA-18 Wheat-germ agglutinin
(Diederichs et al., in preparation)

1.4 P21 a = 44.4, b = 87.7, c = 44.5,
� = � = 90.0, � = 111.7

l �k h

LDL l463 Low-density lipoprotein
(Ritter et al., 1999; Baumstark et al.,
work in progress)

27.0 C2 a = 181.5, b = 425.5, c = 390.8,
� = � = 90.0, � = 91.2

h �k �l

1l2h Interleukin-1� (Rudolph et al., 2003) 1.5 P43 a = b = 53.89, c = 77.36,
� = � = � = 90.0

�h k �l



of H values fits one of the theoretical distributions with

reasonable quality if the measurement errors are small and the

resolution of the data set is high enough, but the correspon-

dence becomes poor in other cases (Fig. 1). To improve the

correspondence, a more sophisticated statistical model is

suggested below that takes experimental errors into account.

This model does not allow the derivation of a set of theoretical

distributions in a closed analytical form, but this problem is

overcome with the use of a Monte Carlo-type simulation

procedure. The error-accounting theoretical distributions

reveal a better correspondence to the empirical distributions

(Fig. 2) and allow a more accurate estimation of the twinning

fraction.

To illustrate this approach, several experimental data sets of

different quality were used. Table 1 summarizes their main

parameters. This paper was inspired by problems we

encountered when detecting twinning in very low resolution

data sets from low-density lipoprotein particles. Nevertheless,

the approach developed might also be useful when working

with medium-resolution data sets.

2. Statistical modelling of H-ratio value: model
disregarding experimental errors

Let us suppose that the twinning law is specified and so for

every reflection h1 its twinning mate h2 = Gh1 is known. In the

following, we distinguish three types of intensities.

(i) ‘True’ intensities I true(h) that correspond to a uniquely

orientated domain; they can be calculated as squares of the

structure-factor magnitudes corresponding to the unit-cell

content.

(ii) ‘Theoretical’ (error-free) twinned intensities corre-

sponding to a hemihedrally twinned sample (i.e. Gh2 = GGh1 =

h1); they are calculated as

Jtheor
ðh1Þ ¼ ð1� �ÞI

true
ðh1Þ þ �Itrue

ðh2Þ

Jtheorðh2Þ ¼ ð1� �ÞI
trueðh2Þ þ �Itrueðh1Þ; ð1Þ

where � represents the twinning fraction (twinning ratio) and

is equal to the relative volume of the smaller twin mate.
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Figure 2
Corrected cumulative distributions of H for four twinned crystals: (a) 1c5e, (b) WGA-div, (c) WGA-18 and (d) LDL l463. The observed distributions are
represented by red dotted lines. Thin black lines represent theoretical cumulative distributions derived for different twinning fractions with the use of a
statistical model that takes experimental errors into account. The values of the twinning fractions are shown over the corresponding lines.



(iii) ‘Observed’ intensities J obs(h) that were obtained in an

X-ray experiment; they differ from theoretical twinned

intensities J theor(h) by experimental errors �(h),

Jobs
ðh1Þ ¼ Jtheor

ðh1Þ þ �ðh1Þ

Jobsðh2Þ ¼ Jtheorðh2Þ þ �ðh2Þ: ð2Þ

The goal of the following study is to find a realistic estimate of

the twinning fraction � in (1) starting from the set of experi-

mentally observed intensities {J obs(h)}. In this paper, we

discuss an approach (Yeates, 1988) based on the statistics of

the discrepancy between the intensities of twinned reflections.

For every pair of twinned reflections h1, h2, we define the

observed discrepancy as

Hobs ¼ Hobsðh1; h2Þ ¼
jJobsðh1Þ � Jobsðh2Þj

Jobsðh1Þ þ Jobsðh2Þ
: ð3Þ

The set of experimentally observed intensities provides the set

of observed H values {H1
obs, H2

obs, . . . , HM
obs} calculated as in

(3), where M is the number of twinned pairs in the respective

set of intensities. [In this paper, we restrict our consideration

to the case of all J obs(h) being positive and so 0 � H < 1.]

If the experimental errors �(h) are negligible, then (3) is

reduced to

HY
¼
ð1� 2�ÞjItrueðh1Þ � Itrueðh2Þj

Itrueðh1Þ þ Itrueðh2Þ
¼
ð1� 2�Þjz1 � z2j

z1 þ z2

; ð4Þ

where

z1 ¼
Itrueðh1Þ

hIi
; z2 ¼

Itrueðh2Þ

hIi
ð5Þ

are normalized intensities and the normalizing factor hIi is

assumed to be the same for both h1 and h2. It is worthy of note

that in (4) the value H is defined through the initially unknown

quantities I true(h1), I true(h2). This makes direct calculation of

H obs with the use of (4) impossible, but allows theoretical

study.

It is easy to see that for � close to 0.5, the values of H for

many twinned pairs will be close to zero. In the opposite case,

when � is close to zero many H values will be significantly

different from zero, reflecting the

difference of the unrelated intensities z1

and z2. This demonstrates that the

distribution of H values through the set

of twinned pairs of reflections is sensi-

tive to the twinning fraction � and may

in principle be used to estimate �. A

statistical approach provides a tool to

determine this estimator.

The basis of the use of the H statistics

is the hypothesis that after a proper

normalization (5) (the normalizing

value hIi is generally different for

different reflections) the normalized

intensities for noncentric reflections

obey Wilson statistics (Wilson, 1949),

i.e. the value of the normalized intensity z for a randomly

chosen reflection h may be considered as a random variable of

exponential distribution,

PðzÞ ¼ expð�zÞ: ð6Þ

(The term ‘Wilson distribution’ is customarily used in crys-

tallography when applied to intensity distribution.) On the

basis of the definition of H in (4) and on the hypothesis that z1,

z2 in (4) are independent random variables distributed by (6)

it becomes possible (Yeates, 1988) to consider HY as a random

variable and to calculate the theoretical probability distribu-

tion PYeates
H;� ðHÞ corresponding to a particular twinning fraction

value �. The cumulative functions for these distributions for

several � values are shown in Fig. 1 and may be presented as

SYeates
H;� ðtÞ ¼

0 for t < 0
1

ð1� 2�Þ
t for 0 � t � 1� 2�

1 for t > 1� 2�

8<
: : ð7Þ

The calculation of {H1
obs, H2

obs, . . . , HM
obs} values by means of

(3) from the experimental data allows an observed cumulative

function to be obtained,

Sobs
H ðtÞ ¼

fNo: of twinned pairs h1; h2 resulting in Hobsðh1; h2Þ � tg

ftotal no: of twinned pairs consideredg
:

ð8Þ

The comparison of the plot of this observed cumulative

function with the set of theoretical plots (7) allows a decision

on the presence of merohedral twinning to be made and an

estimation of the twinning-fraction value � as the value �opt

that provides the best fit of the corresponding theoretical

distribution SYeates
H;� to the observed distribution SH

obs.

The determination of the twinning factor on the basis of

theoretical cumulative distributions (7) has been successfully

applied for many years using high-resolution data of reason-

able accuracy. Nevertheless, the choice of �opt by means of

comparing observed and theoretical distributions (7) becomes

less obvious when the data accuracy is relatively low or the

data are restricted to low resolution (Figs. 1c and 1d). A

possible explanation of the disagreement of observed with

theoretical curves may be the presence of experimental errors

in the observed intensities that are disregarded in the model
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Table 2
Twinning fraction estimated from different statistical criteria.

Initial estimates of the twinning fraction were obtained using the statistical model disregarding
experimental errors (13). Refined estimates (x6) are shown as reported by the authors of the structures.
The estimates accounting for experimental errors correspond to the four criteria of consistency of
theoretical distributions with observed H values as described in xx5.1–5.4.

Estimates accounting for experimental errors

Crystal
Initial
estimate

Refined
estimate Mean Likelihood �2 DKS

1c5e 0.31 0.36 0.34 0.36 0.36 0.35
WGA-div 0.37 0.44 0.47 0.46 0.46 0.46
WGA-18 0.25 0.33 0.30 0.31 0.32 0.32
LDL l463 0.34 — 0.39 0.41 0.41 0.40
1l2h 0.30 0.37 0.34 0.34 0.34 0.34



(4). These errors are sometimes considered to be insignificant,

but it will be shown below that they can substantially change

the shape of theoretical distributions.

3. Statistical modelling of the H ratio accounting for
experimental errors

If experimental errors are assumed to be essential, then (4) is

replaced by

H ¼

ð1� 2�Þðz1 � z2Þ þ
�1

hIi
�
�2

hIi

z1 þ z2 þ
�1

hIi
þ
�2

hIi

��������

��������; ð9Þ

where �1 = �(h1), �2 = �(h2) represent the experimental errors

when measuring J theor(h1), J theor(h2). The theoretical study of

such an extended model requires decisions on the following.

(i) A statistical model for experimental errors.

(ii) Theoretical cumulative functions Stheor
H;� for different �

values.

(iii) ‘Expected’ intensities hIi(h) for every pair of reflec-

tions. It is worth mentioning that we did not need to know the

particular values while working with (4); it was sufficient to

assume that both reflections from a twinned pair have the

same hIi value.

In our study, we assume �1, �2 to be normally distributed

independent random variables with zero mean and a variance

derived from the experimental estimate �obs(h) of the accu-

racy of J obs(h). In the simplest case we can model the standard

deviation of �(h) simply as �obs(h), but more complicated

models may also be considered (see Appendix A). It is note-

worthy that the input of the procedure is now both {J obs(h)}

and {�obs(h)}, so that the derived theoretical cumulative

functions for H are no longer universal but relate to a parti-

cular X-ray experiment.

The development of analytical expressions for the distri-

bution of random value (9) is a difficult mathematical task and

these expressions are hardly ever obtained in the closed form

in a general case. To overcome this difficulty, a Monte Carlo-

type procedure can be used to obtain these distributions by

means of computer simulation. In this approach, to calculate

theoretical distributions Stheor
H;� ðtÞ, a number of trials is

performed that consist of generating random variables z1, z2,

�1, �2 followed by calculation of H in accordance with (9). The

cumulative functions obtained in such a computer simulation

can be considered as an approximation of the theoretical

functions. This approach is close to that used previously to

calculate probability distributions in the case of absent

analytical expression (Lunin et al., 1998; Petrova et al., 2000;

Zwart, 2005).

The expected intensities hIi(h) in our study were assumed

to be constant in thin shells in reciprocal space and were

estimated from the observed intensities J obs(h) in corre-

sponding shells. Three approaches were evaluated to estimate

hIi(h): the mean, the mean weighted by �obs(h) and the

median value of the intensity in the shell (see x6).

4. Visual analysis of test cases

To check to what extent the complicated model improves the

correspondence of theoretical and experimental distributions,

several experimental data sets of different quality were used.

Table 1 summarizes their main parameters. It is worthy of note

that in our approach both measured intensities {Jobs(h)} and

estimates of their accuracy {�obs(h)} form the input of the

procedure, so that accurate estimates of {�obs(h)} become

important for the success of the procedure. The deposited

{�obs(h)} values were used in our tests for these purposes. They

had been calculated by HKL (Otwinowski & Minor, 1997) in

the case of 1c5e and 1l2h and by XDS (Kabsch, 1993) for the

other three test cases.

Fig. 1 presents observed cumulative functions for four test

cases superposed with customary theoretical cumulative

functions (7) that disregard experimental errors. Fig. 2

presents the same observed cumulative functions, but now

superposed with the simulated theoretical cumulative func-

tions that take experimental errors into account. Comparison

of these two sets of figures shows that the correction for

measurement errors essentially changes the shape of the

theoretical cumulative function, making it much closer to the

observed cumulative function.

A more precise analysis of test cases is presented in Table 2

and is discussed in the following sections.

5. The choice of a theoretical model

The choice of a theoretical distribution that is most consistent

with the observed values is a standard problem in the theory of

probability and there are many approaches to solve it. Four of

them used in our study are discussed below.

5.1. Method of moments

A traditional approach to define the twinning fraction � on

the basis of theoretical distributions (7) is the simplest type of

method of moments. It suggests the optimal value �opt as one

that results in the theoretically expected value

hHi� ¼
R

HPtheor
H;� ðHÞ dH ð10Þ

equal to the experimental mean

hHiobs ¼
1

M

PM
j¼1

Hobs
j : ð11Þ

For the statistical model disregarding experimental errors,

direct calculation with the use of (7) gives

hHi� ¼
1

2
� �; ð12Þ

which results in the estimate

�opt ¼
1

2
� hHiobs ¼

1

2
�

1

M

PM
j¼1

Hobs
j ð13Þ

used in many computer programs, such as the CCP4 program

suite (Collaborative Computational Project, Number 4, 1994)

programs DETWIN and SFCHECK (Vaguine et al., 1999).
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Fig. 3 shows theoretical distributions disregarding experi-

mental errors corresponding to �opt as defined in (13).

In the case of error-sensitive models, the expected values

hHi� for different � may be calculated by Monte Carlo

simulation (Fig. 4). The corresponding values �opt derived

from the condition hHi� = hHiobs are generally higher than

those calculated as in (13), but this increment is only essential

for large twinning fractions.

5.2. Likelihood-based estimation of the twinning fraction a

Let H1
obs, H2

obs, . . . , HM
obs be the values calculated as in (3)

based on the input list of twinned pairs and observed inten-

sities. If it is assumed that these values were obtained in the

process of generating H values randomly with a Ptheor
H;� ðHÞ

distribution, then the statistical likelihood

L ¼ Lð�Þ ¼
QM
j¼1

Ptheor
H;� ðH

obs
j Þ ð14Þ

might be used as a measure of the consistency of this

hypothesis and the observed values. This likelihood value

might be interpreted as the probability of reproducing the

observed values {Hj
obs} in the framework of the statistical

hypothesis tested. The likelihood-based estimate of the twin-

ning fraction is the �opt that maximizes likelihood. Obviously,

the logarithm of the likelihood is a more convenient target

function for practical purposes,

�LLGð�Þ ¼ � log Lð�Þ ¼ �
PM
j¼1

log Ptheor
H;� ðH

obs
j Þ ) min :

ð15Þ

Plots of �LLG(�) for test cases are shown in Fig. 5.

5.3. v2 criterion

One of the most popular criteria when fitting theoretical

curves to observed data is the �2 criterion. Depending on the

circumstances, it may have a slightly different form. In the case

of simulated theoretical distributions, it might be presented as

�2 ¼
PKbin

k¼1

Ntheor
total

Nobs
total

� �1=2

nobs
k �

Nobs
total

Ntheor
total

� �1=2

ntheor
k

" #2

nobs
k þ ntheor

k

: ð16Þ

It is assumed here that the interval [0, 1] of H values was

disjointed into Kbin bins; nk
theor is the number of H values

obtained in the simulation that fell in the kth bin and Ntheor
total is

the total number of simulated H values. nk
obs and Nobs

total = M are

the same for observed {Hj
obs} values. The plots of �2(�) for test

cases are shown in Fig. 5.
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Figure 4
The expected value of H versus twinning fraction � for statistical models
that take into account experimental errors (the four marked lines) and for
the conventional approach (thin diagonal line) that neglects experimental
errors.

Figure 3
Cumulative distributions of H for (a) 1c5e and (b) WGA-18. The
observed distributions are represented by red dotted lines. The broken
lines represent theoretical cumulative distributions not accounting for
experimental errors (EF). The two chosen twinning-fraction values
correspond to the initial values estimated as in (13) (green) and the
reported refined values (brown). The solid lines represent theoretical
cumulative distributions derived on the basis of the statistical model that
takes into account experimental errors (EC). The values of the twinning
fraction chosen correspond to the optimal values derived using the
Kolmogorov–Smirnov criterion (see x5.4).



5.4. Kolmogorov–Smirnov test

One further test used in our studies is based on the direct

comparison of theoretical and empirical cumulative functions.

The measure of consistency in this case is defined as

DKSð�Þ ¼ sup
0�H�1

jStheor
H;� ðHÞ � Sobs

ðHÞj: ð17Þ

The plots of DKS(�) for test cases are shown in Fig. 5.

6. Discussion

The visual analysis shows that theoretical cumulative functions

calculated considering experimental errors fit the curves

calculated from observed intensities much better than theor-

etical cumulative functions disregarding experimental errors.

The accuracy of the values of the twinning fraction � esti-

mated by different means can be checked retrospectively after

the final refinement of the atomic model taking twinning into

account and considering the twinning fraction as an adjustable

parameter. Such refinement can be performed, for example,

with the use of SHELXL (Sheldrick & Schneider, 1997;

Herbst-Irmer & Sheldrick, 1998), XTAL (Hall et al., 2000) and

Phenix.refine (Adams et al., 2002; Afonine et al., 2005). Table 2

gives the results of comparison of twinning-fraction estimates

with the final refined value for several test structures. It can be

concluded from this comparison that error-sensitive models

allow more accurate estimates of the twinning fraction. It can

be seen in Table 2 that the simplest estimates obtained from

the simulated mean values of H are close to those obtained

using more sophisticated methods. Nevertheless, analysis of

plots of different criteria allows estimation of the reliability of

the calculated value of the twinning fraction. Our tests have

shown that the Kolmogorov–Smirnov criterion seems to be

the most sensitive to the particular value of the twinning

fraction � (Fig. 5), but it is also sensitive to the quality of the

input set of {�obs(h)} values. The likelihood-based criterion, in

contrast, has the broadest minimum but appears to be a more

robust criterion. Overall, the calculation of all discussed

criteria might represent the most reasonable strategy when

analysing twinning.

It is worthwhile noting that refinement of the twinning

fraction is not yet common practice in macromolecular crys-

tallography and requires some caution. As an example,

Schneider et al. (2000) reported that in their work the value of

the twinning fraction refined to a relatively large value (0.34)

in the very first round of refinement and then gradually

decreased towards its final value (0.24). A further problem

mentioned by one of the referees is that within one crystalline

specimen the twinning fraction can change throughout the

whole volume of the sample. Consequently, when the crystal

rotates during data collection in some cases (e.g. if the crystal

is larger than the beam cross-section) different parts of the

data may correspond to different twinning fractions, confusing

the twinning estimators. A similar note could be made in the

case when the crystal is shifted with respect to the beam during

the course of an X-ray experiment (for example, when

collecting different wavelengths). Data sets for different

wavelengths may have different twinning fractions in this case.

It must be pointed out that some caution is necessary when

forming the list of twinned mates for the calculation of

different statistics (and in particular the mean value of H).

(i) The reflections that are on the twin axes should be

excluded, as they result in h1 = h2 and H = 0.

(ii) The pairs of reflections h1, h2 should be excluded if both

reflections belong to the same orbit of the Laue group (or of

the crystal symmetry group if Friedel pairs are treated sepa-

rately); in this case I(h1) = I(h2) and H = 0.

(iii) The reflection h1, h2 should not belong to the centric

zone, as the Wilson distribution for centric reflections should

be used in this case instead of (6).

As pointed out in the original papers by Yeates, the S(H)

test does not require that all measured reflections must be

used. Therefore, both models may be tried out with specially
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Figure 5
Three statistical criteria versus twinning fraction � for statistical models
that take into account experimental errors. The values of the
Kolmogorov–Smirnov criterion (DKS) are shown on a true scale. The
values of the minus log likelihood (�LLG) and �2 (CHSQ) criteria are
scaled for presentation purposes (the calculated �2 values were divided
by 15 000 for 1c5e and for 200 for LDL; the corresponding numbers of
bins were 50 and 20). (a) 1c5e, (b) LDL l463.



selected subsets of measured intensities. This idea does not

encounter any difficulty if the intensities are chosen randomly

from the input list. As an example, an Rfree type of approach

can be used: i.e. one randomly chosen half of the reflections

may be used to derive theoretical distributions, while the other

half is used to calculate the observed cumulative function (8).

Our tests have not revealed a visible difference from the case

in which all reflections are used simultaneously, but such an

approach may indicate problems in more difficult cases.

Some theoretical difficulties can be encountered if the

selected subset includes the most accurately measured

reflections only, i.e. those with

IobsðhÞ

�obsðhÞ
> �; ð18Þ

where � is some chosen cutoff. On the one hand, in this case

the convergence of theoretical cumulative functions corre-

sponding to models not accounting and accounting for

experimental errors can be expected, as the influence of errors

in (9),

�

hIi
¼

1

�
�
�

�obs
�

Iobs

hIi
; ð19Þ

becomes small if the accuracy � is sufficiently large. On the

other hand, when selecting reflections on a special basis one

can no longer be sure that the randomly chosen intensities

obey Wilson’s distribution. It is easy to overcome this difficulty

in the Monte Carlo simulating procedure, but it produces

problems regarding theoretical considerations. Nevertheless,

our tests revealed that the estimate of � calculated using (13)

converges to the refined twinning-fraction value if the accu-

racy � of the intensities selected for analysis is sufficiently high

(Fig. 6). It is worthwhile noting that the estimates of the

twinning fraction obtained with the model accounting for

experimental errors change only slightly with �. Other selec-

tion strategies may also be incorporated in the Monte Carlo-

type simulating procedure.

In the considerations above, we assumed that the twinning

law is fixed in advance. Nevertheless, the same procedure

might be used for detecting possible twin axes in situations

when the twinning law is not yet established. In this regard, the

possibility of distinguishing perfect twinning (� = 0.5) from a

crystallographic dyad or a screw axis may be of special

interest. In the model disregarding experimental errors both

cases result in zero values of H and cannot be distinguished

using H statistics. These two cases may only be differentiated

on the basis of the statistics of intensities, such as the Wilson

ratio, the cumulative intensity N(z) test or the Padilla–Yeates

L-test (Padilla & Yeates, 2003). In the error-sensitive model,

the values H are calculated differently,

H0:5 ¼
	1 � 	2

z1 þ z2 þ 	1 þ 	2

����
����; Hsym ¼

	1 � 	2

2z1 þ 	1 þ 	2

����
���� ð20Þ

(where 	 represents �/hIi). Accordingly, there is a chance of

distinguishing these two cases on the basis of H statistics.

Unfortunately (see Fig. 7), although a difference between

these distributions exists, it is fairly small, resulting in a low

validity of such a tool.

In our studies, we assumed the ‘expected intensity’ hIi(h) to

be the same for all reflections in a thin shell in reciprocal

space. Obviously, this is not the case when high anisotropy is

present in the data. Statistics based on local intensity differ-

ences (Padilla & Yeates, 2003) may be a more sensitive tool in

this case. We evaluated three strategies to estimate expected

intensities hIi(h) in shells in reciprocal space: the mean, the

mean weighted by �obs(h) and the median value of the

intensity in the shell. These approaches gave comparable

results, with minor differences. Formally, the method of

defining hIi(h) may be considered to be a parameter of a

statistical model. The approach resulting in the best values of

the criterion might be selected as the most appropriate for a

particular case.

In this paper, we discuss the simplest statistical model,

which contains only one adjustable parameter, namely the
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Figure 6
Estimates of twinning fraction � obtained on the basis of intensities with
I obs/�obs > � using the model disregarding experimental errors (13)
(markers only) and by minimization of �2 (solid lines with markers) for
1c5e (circles) and WGA-div (triangles).

Figure 7
The error-sensitive theoretical cumulative distributions for H for the
cases of perfect twinning (solid lines) and crystallographic symmetry
(broken lines) for 1c5e and WGA-18 crystals.



twinning fraction �. Formally speaking, the model can easily

be extended to more complicated cases with several adjustable

parameters. For example, several twin operations (with

different twinning fractions) may be studied simultaneously or

the expected intensity values in resolution shells hIi(h) may be

assumed to be adjustable parameters. At the same time, such

an approach requires multidimensional minimization and

coupling it with indirect (Monte Carlo) calculation of the

target function may present serious computational difficulties.

Nevertheless, such efforts may be worthwhile in some cases.

The reflections related by the twinning operator are often

simultaneously related by the NCS operator (Lebedev et al.,

2006). As suggested by one of the referees, the developed

approach can be applied in this case with the addition of only

one more parameter describing the dependency of the

correlation coefficient between z1 and z2 on the resolution.

To some extent, this also applies to the case of pseudo-

merohedral twinning. Existing twinning tests as well as the

new one assume sufficiently small obliquity (such that the

complete overlap of spots from different lattices occurs within

the whole resolution range of the data set). Some correction

for a larger obliquity could also be tried in the framework of

Monte Carlo modelling.

It is necessary to note that the apparent simplicity of the

Monte Carlo approach may mask mathematical problems. For

example, it was pointed out by one of the referees that in the

case of zero errors both {Hi, i = 1, . . . } and hHi are sufficient

statistics relative to the parameter �. This is not so for the case

with nonzero errors, but it is reasonable to assume that

{Hi, i = 1, . . . } remain ‘good’ statistics in the sense that the loss

of information about � is insignificant. The sophisticated

mathematical analysis is outside the scope of this paper.

Nevertheless, it is worthwhile emphasizing that the suggested

approach is by no means a panacea and does not remove the

need for analytical mathematical study. The method proposed

may be assumed as a temporary remedy as a more convincing

tool has not yet been developed.

APPENDIX A
Modelling of errors

In the error-sensitive model, we assumed that the input of the

procedure is the list of records

h1; Jobs
ðh1Þ; �

obs
ðh1Þ; h2; Jobs

ðh2Þ; �
obs
ðh2Þ; ð21Þ

where h1, h2 are twinned reflections, J obs(h) are measured

intensities and �obs(h) are estimated standard deviations for

the measured intensities. In the simplest case, we can generate

measurement errors in the H-simulation procedure as

normally distributed random values with zero mean and

standard deviations �obs(h). This procedure is quite straight-

forward, but it is too sensitive to the input values �obs(h). The

latter depend on a number of experimental parameters that

are difficult to control and may therefore not always be reli-

able. We briefly describe below a more sophisticated yet more

robust procedure used in our tests that refers to some ‘average

accuracy’ of the data set rather than to the accuracy of a

particular measured intensity. In this approach, the standard

deviation of the measurement error for a given reflection is

modelled as a random variable based on an empirical distri-

bution derived from the input list of reflections.

The counting statistics for diffracted beams may be assumed

to follow the Poisson distribution, so that the standard

deviation is equal to the square root of the number of

measured quanta (Borek et al., 2003). When considering a

large number of registered quanta and calculating an integral

intensity for a single reflection over many pixels, the corre-

sponding probability distribution approaches the normal

distribution, so that the error in a measured intensity J obs may

be considered as a normally distributed random value with

zero mean and standard deviation

�theorðhÞ ¼ a½JtheorðhÞ�1=2: ð22Þ

Here, the coefficient a depends on the scale chosen for the

intensities and might be estimated through the comparison of

theoretical values (1.8) with the observed �obs(h) values

obtained from multiple measured (or symmetric) reflections.

In fact, the accuracy of the measured intensities depends on

many additional factors. As an outcome, an attempt to link

observed values by (22) results in the coefficient a depending

on a particular reflection

�obs
ðhÞ ¼ aðhÞ½Jobs

ðhÞ�1=2: ð23Þ

It is convenient for our purposes to rewrite the last equation in

the form

�obs
ðhÞ ¼ 
ðhÞ½hIiðhÞ�1=2

½Jobs
ðhÞ�1=2

¼ 
ðhÞhIi½zobs
ðhÞ�1=2; ð24Þ

where the mean hIi is the same as in (9). For every particular

reflection the value 
(h) may be calculated through the input

J obs(h), �obs(h) values, provided that the mean values hIi(h)

are assigned. The set of all calculated 
(h) values is then

converted to an empirical probability distribution P
(
) of the

coefficient 
 in the studied data set. When simulating distri-

butions Ptheor
H;� , the standard deviations of the measurement

errors �(h) are considered to be random variables,

�1 ¼ 
1hIi½ð1� �Þz1 þ �z2�
1=2; �1 ¼ 
2hIi½�z1 þ ð1� �Þz2�

1=2;

ð25Þ

where 
 obeys the derived P
(
) distribution and z1 and z2

were generated with (6).

As a result, the statistical model for the H value may be

described as follows. The value is calculated as

H ¼
ð1� 2�Þðz1 � z2Þ þ 	1 � 	2

z1 þ z2 þ 	1 þ 	2

����
����;

where z1 and z2 are independent random variables distributed

with the exponential distribution exp(�z), 	1 and 	2 are

normally distributed random variables (	 = �/hIi) with zero

mean and standard deviations

�ð	1Þ ¼ 
1½ð1� �Þz1 þ �z2�
1=2; �ð	2Þ ¼ 
2½�z1 þ ð1� �Þz2�

1=2

and 
1 and 
2 are independent random variables distributed

with known P
(
) distribution.
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The results obtained with the two procedures for modelling

of measurement errors discussed were close enough in our

tests, but the sophisticated procedure seems to be more stable.
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